Ευκλείδεια και μη-Ευκλείδεια γεωμετρία


Στα μαθηματικά, μια μη-Ευκλείδεια γεωμετρία συνίσταται από δύο γεωμετρίες βασισμένες σε αξιώματα στενά συνδεδεμένα με αυτά που προσδιορίζουν την Ευκλείδεια γεωμετρία. Καθώς η Ευκλείδεια γεωμετρία βρίσκεται στην τομή της μετρικής γεωμετρίας με την αφινική γεωμετρία (ομοπαραλληλική γεωμετρία), η μη-Ευκλείδεια γεωμετρία προκύπτει όταν είτε η απαίτηση του μέτρου "χαλαρώνει" (οτι δηλαδή η συνάρτηση μέτρο παίρνει τιμές όχι μόνο στο [0,+οο) αλλά και σε άλλα διατεταγμένα σύνολα, είτε το αξίωμα των παραλλήλων αντικαθίσταται με ένα εναλλακτικό. Στην τελευταία περίπτωση έχουμε την υπερβολική γεωμετρία και την ελλειπτική γεωμετρία, τις κλασικές μη-ευκλείδειες γεωμετρίες. Όταν η απαίτηση του μέτρου χαλαρώνει, υπάρχουν ομοπαραλληλικά επίπεδα που σχετίζονται με επίπεδες άλγεβρες το οποίο οδηγεί στις κινηματικές γεωμετρίες  οι οποίες επίσης έχουν αποκαλεστεί μη-Ευκλείδειες.
Η ουσιαστική διαφορά με τις μετρικές γεωμετρίες είναι στην φύση των παράλληλων ευθειών. Το 5ο αξίωμα του Ευκλείδη, το αξίωμα των παραλλήλων, είναι ισοδύναμο με το αξίωμα του Πλέιφερ, που δηλώνει ότι, σε ένα επίπεδο 2 διαστάσεων, για κάθε ευθεία ε και σημείο A, εκτός της ε, υπάρχει ακριβώς μια ευθεία διερχόμενη από το A που δεν τέμνει την ε. Αντίθετα, στην υπερβολική γεωμετρία υπάρχουν άπειρες το πλήθος ευθείες διερχόμενες από το A που δεν τέμνουν την ε, ενώ στην ελλειπτική γεωμετρία, κάθε ευθεία διερχόμενη του A τέμνει την ε.
Άλλος τρόπος να περιγράψουμε την διαφορά μεταξύ αυτών των γεωμετριών είναι να θεωρήσουμε 2 ευθείες επ' αόριστον επεκταμένες σε ένα δισδιάστατο επίπεδο που είναι και οι 2 κάθετες σε μία 3η ευθεία:
  • Στην Ευκλείδεια Γεωμετρία οι ευθείες διατηρούν σταθερή απόσταση η μία από την άλλη ακόμα και αν επεκταθούν στο άπειρο, και είναι γνωστές ως παράλληλες.
  • Στην υπερβολική γεωμετρία "καμπυλώνουν" απομακρύνοντας η μία από την άλλη, αυξάνοντας την μεταξύ τους απόσταση καθώς η μία απομακρύνεται από τα σημεία τομής με την κοινή κάθετη; τέτοιες ευθείες συχνά αποκαλούνται υπερπαράλληλες.
  • Στην ελλειπτική γεωμετρία "καμπυλώνουν" η μία προς την άλλη και τέμνονται.

No comments:

Post a Comment